Abstract
In this paper a neural network-based approximate dynamic programming method, namely direct heuristic dynamic programming (direct HDP), is applied to power system stability control. Direct HDP is a learning and approximation based approach to address nonlinear system control under uncertainty. In the present paper, real-time system responses provided by wide area measurement system (WAMS) are used to construct such controllers which are uniquely tailored for the problems under consideration. In addition, the controller learning objective is formulated as a reward function that reflects global characteristics of the power system low frequency oscillation under the consideration of coupling effect among system components. The contribution of the paper includes a convergence proof of the direct HDP algorithm using an LQR framework, as well as case study to illustrate the proposed learning control algorithm. The case study aims at providing a new solution to a difficult large scale system coordination problem where the China Southern Power Grid is used for.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.