Abstract

During insulin-resistant states such as type II diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production (HGP) yet promotes lipid synthesis. This metabolic state has been termed "selective insulin resistance" to indicate a defect in one arm of the insulin-signaling cascade, potentially downstream of Akt. Here we demonstrate that Akt-dependent activation of mTORC1 and inhibition of Foxo1 are required and sufficient for de novo lipogenesis, suggesting that hepatic insulin signaling is likely to be intact in insulin-resistant states. Moreover, cell-nonautonomous suppression of HGP by insulin depends on a reduction of adipocyte lipolysis and serum FFAs but is independent of vagal efferents or glucagon signaling. These data are consistent with a model in which, during T2DM, intact liver insulin signaling drives enhanced lipogenesis while excess circulating FFAs become a dominant inducer of nonsuppressible HGP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.