Abstract

The major drawback of the Baculovirus/Sf9 system for recombinant adeno-associated viral (rAAV) manufacturing is that most of the Bac-derived rAAV vector serotypes, with few exceptions, demonstrate altered capsid compositions and lower biological potencies. Here, we describe a new insect cell-based production platform utilizing attenuated Kozak sequence and a leaky ribosome scanning to achieve a serotype-specific modulation of AAV capsid proteins stoichiometry. By way of example, rAAV5 and rAAV9 were produced and comprehensively characterized side by side with HEK293-derived vectors. A mass spectrometry analysis documented a 3-fold increase in both viral protein (VP)1 and VP2 capsid protein content compared with human cell-derived vectors. Furthermore, we conducted an extensive analysis of encapsidated single-stranded viral DNA using next-generation sequencing and show a 6-fold reduction in collaterally packaged contaminating DNA for rAAV5 produced in insect cells. Consequently, the re-designed rAAVs demonstrated significantly higher biological potencies, even in a comparison with HEK293-manufactured rAAVs mediating, in the case of rAAV5, 4-fold higher transduction of brain tissues in mice. Thus, the described system yields rAAV vectors of superior infectivity and higher genetic identity providing a scalable platform for good manufacturing practice (GMP)-grade vector production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.