Abstract

Paper substrates, coated with ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs), allowed the production of inexpensive, highly-performing and extremely reproducible three-dimensional (3D) SERS platforms. The ZnO NRs were synthesized by a simple, fast and low-temperature hydrothermal method assisted by microwave radiation and made SERS-active by decorating them with a dense array of silver nanoparticles deposited via a single-step thermal evaporation technique. Using Rhodamine 6G (R6G) as a probe molecule, with an amount down to 10−9 M, the SERS substrates allowed a Raman signal enhancement of 107. The contribution of the inter-Ag-NPs gaps for 3D geometry, ZnO NRs orientation and the large sensing area allowed by the NR scaffolds, were determinant factors for the significant Raman enhancement observed. The results demonstrate that plasmonic nanorod forests, covered with Ag NPs, are efficient SERS substrates with the advantages of being recyclable, flexible, lightweight, portable, biocompatible and extremely low-cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.