Abstract
Recently, graphene-like nanofilm materials have attracted extensive attention as the fundamental building blocks for potential applications in optoelectronic devices. Here, we developed a simple and versatile technique to directly produce high-quality graphene nanowalls on silica substrate without any catalyst and post-transfer. It shows that the entire surface of silica substrate is fully covered with continuous graphene nanowalls with well-connected network. Moreover, the prepared optical films exhibit excellent optical absorption with a high absorbance of 95% at a wide range of waveband from visible to near infrared. Such a three dimensional film material with super-large surfaces and outstanding optical properties is further decorated with CdTe nanofilm and used as a photo-electrochemical working electrode. The prepared electrode exhibits a fast photo-responsive behavior with high photo-current density up to 3mA/cm2. Our study identifies that graphene nanowalls served as an excellent transfer black body can enhance the photo-electrochemical performance of electrode when it is sensitized with semiconductor nanofilms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.