Abstract

Lithium-oxygen (Li-O₂) batteries are considered as a promising high-energy storage system. However, they suffer from overpotential and low energy efficiency. This study showed that CuO growth on carbon using facile synthesis (simple dipping and heating process) reduces overpotential, thus increasing the energy efficiency. We confirmed the structure of CuO on carbon using X-ray diffraction pattern, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy. The cathode of CuO on carbon shows an average overpotential reduction of ˜6% charge/discharge during 10 cycles in nonaqueous Li-O₂ batteries. The possible reason for the reduced charge overpotential of the cathode of CuO on carbon is attributed to the formed Li₂O₂ of smaller particle size during discharging compared to pristine carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.