Abstract
We present a method for performing non-adiabatic, grid-based nuclear quantum dynamics calculations using diabatic potential energy surfaces (PESs) generated “on-the-fly”. Gaussian process regression is used to interpolate PESs by using electronic structure energies, calculated at points in configuration space determined by the nuclear dynamics, and diabatising the results using the propagation diabatisation method reported recently (Richings and Worth, 2015). Our new method is successfully demonstrated using a grid-based approach to model the non-adiabatic dynamics of the butatriene cation. Overall, our scheme offers a route towards accurate quantum dynamics on diabatic PESs learnt on-the-fly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.