Abstract

For visualization of medical diffusion data one typically computes a tensor field from a set of diffusion volume images scanned with different gradient directions. The resulting diffusion tensor field is visualized using glyph- or tracking-based approaches. The derivation of the tensor, in general, involves a loss in information, as the n > 6 diffusion values for the n gradient directions are reduced to six diverse entries of the symmetric 3 × 3 tensor matrix. We propose a direct diffusion visualization approach that does not operate on the diffusion tensor. Instead, we assemble the gradient vectors on a unit sphere and deform the sphere by the measured diffusion values in the respective gradient directions. We compute a continuous deformation model from the few discrete directions by applying several processing steps. First, we compute a triangulation of the spherical domain using a convex hull algorithm. The triangulation leads to neighborhood information for the position vectors of the discrete directions. Using a parameterization over the sphere we perform a Powell-Sabin interpolation, where the surface gradients are computed using least-squares fitting. The resulting triangular mesh is subdivided using a few Loop subdivision steps. The rendering of this subdivided triangular mesh directly leads to a glyph-based visualization of the directional diffusion measured in the respective voxel. In a natural and intuitive fashion, our deformed sphere visualization can exhibit additional, possibly valuable information in comparison to the classical tensor glyph visualization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call