Abstract

This paper extends the methodology presented in the companion paper to study the effects of non-structural components’ (NSCs) damping ratio and their location in the building on the pseudo-acceleration floor response spectra (PA-FRS) of reinforced concrete buildings, and propose equations to derive floor acceleration design spectra (FDS) directly from the uniform hazard design spectra (UHS) for Montréal, Canada. The buildings used in the study are 27 existing reinforced concrete structures with braced frames and shear walls as their lateral load resisting systems: 12 are low-rise (up to 3 stories above ground), 10 are medium-rise (4 to 7 stories), and 5 are high-rise (10 to 18 stories). Based on statistical and regression analysis of floor acceleration spectra generated from linear dynamic analysis of coupled building–NSC systems, two sets of modification factors are proposed to account for floor elevation and NSC damping, applicable to the experimentally-derived FDS for roof level and 5% NSC damping. Modification factor equations could be derived only for the low-rise and medium-rise building categories, as insufficient correlation in trends could be obtained for high-rises given their low number. The approach is illustrated in detail for two typical buildings of the database, one low-rise (Building #4) and one medium-rise (Building #18), where the proposed FDS/UHS results show agreement with those obtained from detailed dynamic analysis. The work is presented in the context of a more general methodology to show its potential general applicability to other building types and locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call