Abstract

ABSTRACTThis paper presents synthesis and optical properties of mono-crystalline Ge1-ySny and Ge1-x-ySixSny semiconductor alloys grown on Si/Ge platforms via purposely designed CVD routes using highly reactive Si/Ge/Sn hydrides including Ge3H8, Ge4H10, Si4H10 and SnD4. The Ge1-ySny materials are shown to exhibit strong and tunable photoluminescence induced by the substitution of sizable Sn concentrations in the Ge diamond lattice ultimately leading to an indirect-to-direct band gap crossover at y= 0.08-0.09. The optical data indicate that the IR coverage of the alloy extends well beyond that of elemental Ge into the broader long wavelength range suggesting a variety of applications in Si-based photonics. Ge1-x-ySixSny alloys represent the first viable ternary semiconductor among group IV elements with independently tunable lattice parameter and electronic structure. Studies of the compositional dependence of direct and indirect edges in these alloys using photoluminescence and photocurrent measurements are reviewed. The optical results show band gap variation over a wide range above and below that of Ge from 1.1 to 0.5 eV and provide the first demonstration of direct gap behavior in this semiconductor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.