Abstract

A slow time-delay assumption restricts the application of control approaches for numerous systems which are constantly affected by multiple uncertainties, including parameters, control coefficients, and the asymmetric dead-zone input. This work presents a new adaptive method for a class of high-order nonlinear delayed systems by removing the so-called slow time-delay assumption and multiple uncertainties. Remarkably, with a novel Lyapunov-Razumikhin (L-R) function and a direct fuzzy adaptive regulation scheme, a memoryless adaptive feedback controller is skillfully constructed to guarantee that the output tracks the given reference signal while keeping the boundedness of all closed-system signals. Finally, the presented scheme is applied to control a single-link robot system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call