Abstract

New techniques for the direct measurement of skin friction using nematic liquid crystal layers are demonstrated. Skin friction measurements can be made using a molecular rotation time technique or an equilibrium orientation technique. A mathematical model describing the molecular dynamics of the nematic liquid crystal layer has been introduced. Theoretical results from the proposed mathematical model are in excellent agreement with the current experimental measurements. It is thus demonstrated that the present model captures the essential physics of the nematic liquid crystal measurement techniques. Estimates based on the variance of the liquid crystal calibration data indicate that skin friction measurements to within ±4 percent should certainly be possible. The techniques offer the considerable advantage of simplicity, without any compromise on the accuracy, relative to other surface shear stress measurement techniques. The full surface measurement capacity of the equilibrium orientation technique is demonstrated by measuring the skin friction distribution around a cylindrical obstruction in a fully developed laminar flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.