Abstract

AbstractOn‐surface synthesis shows significant potential in constructing novel nanostructures/nanomaterials, which has been intensely studied in recent years. The formation of acetylenic scaffolds provides an important route to the fabrication of emerging carbon nanostructures, including carbyne, graphyne, and graphdiyne, which feature chemically vulnerable sp‐hybridized carbon atoms. Herein, we designed and synthesized a tribromomethyl‐substituted compound. By using a combination of high‐resolution scanning tunneling microscopy, non‐contact atomic force microscopy, and density functional theory calculations, we demonstrated that it is feasible to convert these compounds directly into C−C triple‐bonded structural motifs by on‐surface dehalogenative homocoupling reactions. Concurrently, sp3‐hybridized carbon atoms are converted into sp‐hybridized ones, that is, an alkyl group is transformed into an alkynyl moiety. Moreover, we achieved the formation of dimer structures, one‐dimensional molecular wires, and two‐dimensional molecular networks on Au(111) surfaces, which should inspire further studies towards two‐dimensional graphyne structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.