Abstract
Purpose– The purpose of this paper is to present a direct force control which uses two closed-loop controller for one-degree-of-freedom human-machine system to synchronize the human position and machine position, and minimize the human-machine force. In addition, the friction is compensated to promote the performance of the human-machine system.Design/methodology/approach– The dynamic of the human-machine system is mathematically modeled. The control strategy is designed using two closed-loop controllers, including a PID controller and a PI controller. The frictions, which exist in the rotary joint and the hydraulic wall, are compensated separately using the Friedland’s observer and Dahl’s observer.Findings– When human-machine system moves at low velocity, there exists a significant amount of static friction that hinders the system movements. The simulation results show that the system gives a better performance in human-machine position synchronization and human-machine force minimization when the friction is compensated.Research limitations/implications– The acquired results are based on simulation not experiment.Originality/value– This paper is the first to apply the electrohydraulic servo systems to both actuate the human-machine system, and use the direct force control strategy consisting of two closed-loop controllers. It is also the first to compensate the friction both in the robot joint and hydraulic wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.