Abstract
Many attempts to obtain a clean stream of COF2 have been carried out in the past by means of the direct fluorination of carbon monoxide with elemental fluorine or by electrochemical fluorination. The reaction is highly exothermic, therefore difficult to control. It can easily develop into a thermal runaway with a poor selectivity. We have successfully circumvented these critical issues by using a stainless steel parallel channel microreactor (surface/volume ratio≈1×104m−1, residence time τ≈0.1s) for the direct fluorination of carbon monoxide. Its performance in terms of operability and selectivity is compared to that of a standard reactor assembly, namely a fluorine burner reactor coupled with a water cooled heat exchanger. While the microreactor assembly succeeded to control the exothermic reaction, in the same experimental conditions the standard assembly reactor underwent serious corrosion issues that lead to nozzle meltdown lack of selectivity and consequent plant shutdowns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.