Abstract

Inference in state-space models usually relies on recursive forms for filtering and smoothing of the state vectors regarding the temporal structure of the observations, an assumption that is, from our view point, unnecessary if the dataset is fixed, that is, completely available before analysis. In this paper, we propose a computational framework to perform approximate full Bayesian inference in linear and generalized dynamic linear models based on the Integrated Nested Laplace Approximation (INLA) approach. The proposed framework directly approximates the posterior marginals of interest disregarding the assumption of recursive updating/estimation of the states and hyperparameters in the case of fixed datasets and, therefore, enable us to do fully Bayesian analysis of complex state-space models more easily and in a short computational time. The proposed framework overcomes some limitations of current tools in the dynamic modeling literature and is vastly illustrated with a series of simulated as well as well known real-life examples from the literature, including realistically complex models with correlated error structures and models with more than one state vector, being mutually dependent on each other. R code is available online for all the examples presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.