Abstract

Listeria monocytogenes frequently causes Listeriosis in humans and animals. In present study, we discovered that in the presence of FeSO4, L. monocytogenes became viable but non-culturable (VBNC), and remained virulent to Caenorhabditis elegans. The killing assay indicated that these VBNC cells kept sensitive to tetracycline, differing from dormant cells. Transcriptomic analysis revealed more gene transcription occurrence in the VBNC cells compared to dormant cells, involving stress response and ribosome binding. No ferroptosis hallmarks were observed in the VBNC cells, whereas the application of either intracellular Fe2+ chelator or the ferroptosis inhibitor arrested the formation of VBNC state by FeSO4, as well as by Benzakonium chloride or Haz-Tab. This implicated the universal involvement of intracellular Fe2+ and other cascades related to ferroptosis in the formation of VBNC state in L. monocytogenes. Taken together, we discovered an iron-induced VBNC state in L. monocytogenes, and provided clues to further understanding their potential risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call