Abstract

Recently, metal-organic frameworks (MOFs) with multifunctional pore chemistry have been intensively investigated for positioning the desired morphology at specific locations onto substrates for manufacturing devices. Herein, we develop a micro-confined interfacial synthesis (MIS) approach for fabrication of a variety of free-standing MOF superstructures with desired shapes. This approach for engineering MOFs provides three key features: 1) in situ synthesis of various free-standing MOF superstructures with controlled compositions, shape, and thickness using a mold membrane; 2) adding magnetic functionality into MOF superstructures by loading with Fe3 O4 nanoparticles; 3) transferring the synthesized MOF superstructural array on to flat or curved surface of various substrates. The MIS route with versatile potential opens the door for a number of new perspectives in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.