Abstract

Micro-temperature sensors, which composed of a Cu2O-rich sensing part and two Cu-rich electrodes, were directly fabricated by femtosecond laser reduction patterning of CuO nanoparticles. Patterning of the microstructures was performed by laser scanning with pitches of 5, 10, and 15 µm. Cu2O-rich micropatterns were formed at the laser scan speed of 1 mm/s, the pitch of 5 µm, and the pulse energy of 0.54 nJ. Cu-rich micropatterns that had high generation selectivity of Cu against Cu2O were fabricated at the laser scan speed of 15 mm/s, the pitch of 5 µm, and the pulse energy of 0.45 nJ. Electrical resistivities of the Cu2O- and Cu-rich micropatterns were approximately 10 Ω m and 9 µΩ m, respectively. The temperature coefficient of the resistance of the micro-temperature sensor fabricated under these laser irradiation conditions was −5.5 × 10−3/°C. This resistance property with a negative value was consistent with that of semiconductor Cu2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.