Abstract

Analog fluids have been widely used to mimic the convective mixing of carbon dioxide into brine in the study of geological carbon storage. Although these fluid systems had many characteristics of the real system, the viscosity contrast between the resident fluid and the invading front was significantly different and largely overlooked. We used x-ray computed tomography to image convective mixing in a three-dimensional porous medium formed of glass beads and compared two invading fluids that had a viscosity 3.5× and 16× that of the resident fluid. The macroscopic behavior such as the dissolution rate and onset time scaled well with the viscosity contrast. However, with a more viscous invading fluid, fundamentally different plume structures and final mixing state were observed due in large part to greater dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.