Abstract

Semiconductor-based surface enhanced Raman scattering (SERS) has attracted great attention due to its excellent spectral reproducibility, high uniformity, and good anti-interference ability. However, its relatively low SERS sensitivity still hinders its further developments in both performance and applications. Since the SERS is a peculiar surface effect, investigating the facet-dependent SERS activity of semiconductor nanostructures is crucial to boost their SERS signals. Although the semiconductor facet-dependent SERS effect is predicted via numerical calculations, convincing experimental evidence is scarce due to complicated and undefined surface conditions. In this work, three facet-defined ({100}, {110}, and {111} facets) Cu2 O microcrystals (MCs) with clear surface atomic configuration are utilized to investigate the facet-dependent SERS effect. The results from the Kelvin probe force microscopy measurements on single Cu2 O polyhedron, demonstrate that the facet-dependent work function plays a crucial role in the interfacial charge transfer process. Comparing with the {110} and {111} facets, the {100} facet possesses the lowest electronic work function, which enables more efficient interfacial charge transfer. The simulation results further confirm that the {100}-facets can transfer the most electrons from Cu2 O MCs to molecules due to its lowest facet work function, resulting in the largest increment of the molecular polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.