Abstract
Cryptochromes are blue light receptors that mediate circadian rhythm and magnetic sensing in various organisms. A typical cryptochrome consists of a conserved photolyase homology region domain and a varying carboxyl-terminal extension across species. The structure of the flexible carboxyl-terminal extension and how carboxyl-terminal extension participates in cryptochrome’s signaling function remain mostly unknown. In this study, we uncover the potential missing link between carboxyl-terminal extension conformational changes and downstream signaling functions. Specifically, we discover that the blue-light induced opening of carboxyl-terminal extension in C. reinhardtii animal-like cryptochrome can structurally facilitate its interaction with Rhythm Of Chloroplast 15, a circadian-clock-related protein. Our finding is made possible by two technical advances. Using single-molecule Förster resonance energy transfer technique, we directly observe the displacement of carboxyl-terminal extension by about 15 Å upon blue light excitation. Combining structure prediction and solution X-ray scattering methods, we propose plausible structures of full-length cryptochrome under dark and lit conditions. The structures provide molecular basis for light active conformational changes of cryptochrome and downstream regulatory functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.