Abstract

The mobility of radiocesium in the environment is largely mediated by cation exchange in micaceous clays, in particular Illite-a non-swelling clay mineral that naturally contains interlayer K+ and has high affinity for Cs+. Although exchange of interlayer K+ for Cs+ is nearly thermodynamically nonselective, recent experiments show that direct, anhydrous Cs+-K+ exchange is kinetically viable and leads to the formation of phase-separated interlayers through a mechanism that remains unclear. Here, using classical atomistic simulations and density functional theory calculations, we identify a molecular-scale positive feedback mechanism in which exchange of the larger Cs+ for the smaller K+ significantly lowers the migration barrier of neighboring K+, allowing exchange to propagate rapidly once initiated at the clay edge. Barrier lowering upon slight increase in layer spacing (∼0.7 Å) during Cs+ exchange is an example of "chemical-mechanical coupling" that likely explains the observed sharp exchange fronts leading to interstratification. Interestingly, we find that these features are thermodynamically favored even in the absence of a heterogeneous layer charge distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.