Abstract

AbstractRadical‐mediated gas‐phase reactions play an important role in the conversion of methane under non‐oxidative conditions into olefins and aromatics over iron‐modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C2+ radical intermediates participating in the complex gas‐phase reaction network. Our experiments pinpoint different C2‐C5 radical species that allow for a stepwise growth of the hydrocarbon chains. Propargyl radicals (H2C−C≡C−H) are identified as essential precursors for the formation of aromatics, which then contribute to the formation of heavier hydrocarbon products via hydrogen abstraction–acetylene addition routes (HACA mechanism). These results provide comprehensive mechanistic insights that are relevant for the development of methane valorization processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.