Abstract

In this study, the size (dielectric) confinement effect on the peak position of intra-molecular vibrations in the infrared spectra of liquid benzene, carbon disulphide and chloroform is described theoretically, and observed experimentally, for the first time. It is shown that the shift in the peak position due to the dielectric confinement effect can reach a few tenths of a wavenumber for strong vibrational bands. The results obtained confirm the applicability of the dispersive local-field approach for the description of the dielectric confinement effect for liquid media, as well as for crystalline and amorphous solids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call