Abstract
It is thought that the proposed new family of multi-functional materials namely the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching we show that the recently discovered thermoelectric semiconductor $AgSbSe_{2}$ has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as $AgSbSe_{2}$ crystalizes in cubic rock salt structure with centro-symmetric space group (Fm-3m) and therefore no ferroelectricity is expected. However, from high resolution transmission electron microscopy (HRTEM) measurement we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in $AgSbSe_{2}$ and gives rise to the observed ferroelectricity. Stereochemically active $5s^{2}$ lone pair of Sb can also give rise to local structural distortion, which creates ferroelectricity in $AgSbSe_{2}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.