Abstract

Spectrally resolved and kinetic response of electroluminescence was monitored from resistively heated carbon nanotube (CNT) macroassemblies. Sensitive detection system and custom-made setup for high-speed optoelectronic measurements were employed to investigate unsorted and single chirality-enriched CNTs. By increasing the content of (7,6) or (6,5) CNTs in a sample, the E11 emission peak in the infrared region became more narrow (∼150 nm), hence approaching that of commercial emitters for this spectral range. Moreover, electroluminescence initiation in CNTs occurred very rapidly and reached its full intensity within tens of milliseconds. Interestingly, observed delay between bias voltage application and electroluminescence proved triplet-triplet annihilation in the macroscopic assembly of CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.