Abstract

The iron–platinum (FePt) alloy exhibits structural and magnetic phase transformation even at a low temperature of 300°C with an insignificant grain growth. These transformation studies were understood nano-scopically using high resolution-transmission electron microscopy (HR-TEM). The FePt grains show strain induced structural transformation and adopts polycrystalline behaviour. The chemical ordering of FePt grains is explained using Fast Fourier Transform (FFT) analysis of the TEM image. HR-TEM image shows the hexagonal arrangement of Pt atoms in the [001] direction in the FePt unit cell which gives the direct evidence of chemical ordering in FePt nanostructured alloy. The filtration and reconstruction method has been employed with the help of inverse Fast Fourier Transformation tool, confirming the formation of L10 FePt phase. The chemical ordering is also confirmed by structural and magnetic measurements revealing an order parameter of 0.875 and coercivity 3kOe respectively at a low annealing temperature of 300°C. The chemical ordering at low annealing temperature makes it suitable for media storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.