Abstract

We report photocatalytic H(2) production by hydrogenase (H(2)ase)-quantum dot (QD) hybrid assemblies. Quenching of the CdTe exciton emission was observed, consistent with electron transfer from the quantum dot to H(2)ase. GC analysis showed light-driven H(2) production in the presence of a sacrificial electron donor with an efficiency of 4%, which is likely a lower limit for these hybrid systems. FTIR spectroscopy was employed for direct observation of active-site reduction in unprecedented detail for photodriven H(2)ase catalysis with sensitivity toward both H(2)ase and the sacrificial electron donor. Photosensitization with Ru(bpy)(3)(2+) showed distinct FTIR photoreduction properties, generating all of the states along the steady-state catalytic cycle with minimal H(2) production, indicating slow, sequential one-electron reduction steps. Comparing the H(2)ase activity and FTIR results for the two systems showed that QDs bind more efficiently for electron transfer and that the final enzyme state is different for the two sensitizers. The possible origins of these differences and their implications for the enzymatic mechanism are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.