Abstract
This paper provides direct evidence for the role of surface plasmons in the enhanced optical transmission of light through metallic nanoscale hole arrays. Near-field optical images directly confirmed the presence of surface plasmons on gold nanohole arrays with interhole spacings larger than the surface plasmon wavelength. A simple interference model provides an intuitive explanation of the two types of fringe wavelengths observed in the near-field optical images. Far-field spectroscopy revealed a surface plasmon band that contributed a factor > 8 to the transmission enhancement. Furthermore, silicon nanohole arrays did not exhibit any features in the near-field, which demonstrates that metallic materials are necessary for enhanced light transmission through nanohole arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.