Abstract

Enhancement of the rostral ventrolateral medulla (RVLM) presympathetic (norepinephrine, NE) neuronal activity represents a neurochemical mechanism for the pressor effect of ethanol. In this study, we tested the hypothesis that ethanol action on RVLM presympathetic neurons is selectively influenced by the signaling of the local imidazoline (I1) receptor. To support a neuroanatomical and an I1-signaling selectivity of ethanol, and to circumvent the confounding effects of anesthesia, the dose-related neurochemical and blood pressure effects of ethanol were investigated in the presence of selective pharmacological interventions that cause reduction in the activity of RVLM or nucleus tractus solitarius (NTS) NE neurons via local activation of the I1 or the alpha2-adrenergic receptor in conscious spontaneously hypertensive rats. Local activation of the I1 receptor by rilmenidine (40 nmol) or by the I1/alpha2 receptor mixed agonist clonidine (1 nmol), and local activation of the alpha2-adrenergic receptor (alpha2AR) by the pure alpha2AR agonist alpha-methylnorepinephrine (alpha-MNE, 10 nmol) caused reductions in RVLM NE, and blood pressure. Intra-RVLM ethanol (1, 5, or 10 microg), microinjected at the nadir of the neurochemical and hypotensive responses, elicited dose-dependent increments in RVLM NE and blood pressure in the presence of local I1--but not alpha2-receptor activation. Only intra-NTS alpha-MNE, but not rilmenidine or clonidine, elicited reductions in local NE and blood pressure; ethanol failed to elicit any neurochemical or blood pressure responses in the presence of local activation of the alpha2AR within the NTS. The findings support the neuroanatomical selectivity of ethanol, and support the hypothesis that the neurochemical (RVLM NE), and the subsequent cardiovascular, effects of ethanol are selectively modulated by I1 receptor signaling in the RVLM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.