Abstract

Luminescence quenching at high dopant concentrations generally limits the dopant concentration to less than 1-5 mol% in lanthanide-doped materials, and this remains a major obstacle in designing materials with enhanced efficiency/brightness. In this work, we provide direct evidence that the major quenching process at high dopant concentrations is the energy migration to the surface (i.e., surface quenching) as opposed to the common misconception of cross-relaxation between dopant ions. We show that after an inert epitaxial shell growth, erbium (Er3+) concentrations as high as 100 mol% in NaY(Er)F4/NaLuF4 core/shell nanocrystals enhance the emission intensity of both upconversion and downshifted luminescence across different excitation wavelengths (980, 800, and 658 nm), with negligible concentration quenching effects. Our results highlight the strong coupling of concentration and surface quenching effects in colloidal lanthanide-doped nanocrystals, and that inert epitaxial shell growth can overcome concentration quenching. These fundamental insights into the photophysical processes in heavily doped nanocrystals will give rise to enhanced properties not previously thought possible with compositions optimized in bulk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call