Abstract
Appreciation of stochastic Loewner evolution (SLE_{kappa}) , as a powerful tool to check for conformal invariant properties of geometrical features of critical systems has been rising. In this paper we use this method to check conformal invariance in sandpile models. Avalanche frontiers in Abelian sandpile model are numerically shown to be conformally invariant and can be described by SLE with diffusivity kappa=2 . This value is the same as value obtained for loop-erased random walks. The fractal dimension and Schramm's formula for left passage probability also suggest the same result. We also check the same properties for Zhang's sandpile model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.