Abstract
Conflicting data exist regarding the ability of the rat proximal convoluted tubule to maintain a transepithelial gradient for CO2 and the effects of carbonic anhydrase on CO2 permeability. The present in vivo microperfusion experiments were designed to assess the ability of the rat proximal tubule to sustain a CO2 gradient between tubule lumen and peritubular blood. Tubules were perfused at rates ranging from 10 to 100 nl/min with isotonic sodium chloride containing no CO2. Peritubular capillary and intraluminal PCO2 was measured during microperfusion with PCO2 microelectrodes to allow determination of the transepithelial CO2 gradient. The mean PCO2 measured in peritubular capillaries of control rats was 60.6 +/- 1.9 mmHg. Since the perfusion solution initially contained no CO2, a gradient of 60 mmHg was imposed across the tubule epithelium. Intraluminal PCO2 rapidly approached that of the surrounding capillaries. At a tubule perfusion rate of 20 nl/min, the gradient between lumen and blood decreased to 0.9 mmHg, a value not significantly greater than zero. The calculated CO2 permeability coefficient (KCO2) was 3.69 X 10(-5) cm2/s. Addition of either 10(-4) M acetazolamide or benzolamide did not prolong the rapid dissipation of the imposed CO2 gradient. The KCO2 during carbonic anhydrase inhibition was not significantly different from control values. It is concluded that the rat proximal tubule does not present a physiologically significant diffusion barrier to CO2 either in the presence or absence of carbonic anhydrase activity. The previously demonstrated acid disequilibrium pH in the proximal tubule during inhibition of carbonic anhydrase represents an intraluminal accumulation of carbonic acid rather than of carbon dioxide gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.