Abstract

We propose a new method for the direct and efficient evaluation of the Felix Smith's lifetime Q matrix for reactive scattering problems. Simultaneous propagation of the solution to a set of close-coupled equations together with its energy derivative allows one to avoid common problems pertinent to the finite-difference approach. The procedure is implemented on a reactive scattering code which employs the hyperquantization algorithm and the Johnson-Manolopoulos [J. Comput. Phys. 13, 455 (1973); J. Chem. Phys 85, 6425 (1986)] propagation to obtain the complete S matrix and scattering observables. As an application of the developed formalism, we focus on the total angular momentum dependence of narrow under-barrier resonances supported by van der Waals wells of the title reaction. Using our method, we fully characterize these metastable states obtaining their positions and lifetimes from Lorentzian fits to the largest eigenvalue of the lifetime matrix. Remarkable splittings of the resonances observed at J>0 are rationalized in terms of a hyperspherical model. In order to provide an insight on the decay mechanism, the Q-matrix eigenvectors are analyzed and the dominant channels populated during the decomposition of metastable states are determined. Possible relevance of the present results to reactive scattering experiments is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.