Abstract

Design and develop of cost-effective non-enzymatic electrode materials is of great importance for next generation of glucose sensors. In this work, we report a high-performance self-supporting electrode fabricated via direct epitaxial growth of nickel phosphide on Ni foam (Ni2P/NF) for nonenzymatic glucose sensors in alkaline solution. Under the optimal conditions, the uniform Ni2P nanosheets could be obtained with an average thickness of 80 nm, which provides sufficient active sites for glucose molecules. As a consequence, the Ni2P/NF electrode displays superior electrochemistry performances with a high sensitivity of 6375.1 μA mM−1 cm−2, a quick response about 1 s, a low detection limit of 0.14 μM (S/N = 3), and good selectivity and specificity. Benefit from the strong interaction between Ni2P and NF, the Ni2P/NF electrode is also highly stable for long-term applications. Furthermore, the Ni2P/NF electrode is capable of analyzing glucose in human blood serum with satisfactory results, indicating that the Ni2P/NF is a potential candidate for glucose sensing in real life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call