Abstract

Direct energy conversion has been investigated using Ni/SiC Schottky junctions with the irradiation of monochromatized synchrotron x rays mimicking the gamma rays of 237Np (30 keV) and 241Am (60 keV). Through current–voltage measurements, electrical energies were obtained for both types of gamma rays. The energy conversion efficiencies based on absorbed energy were found to be ∼1.6%, which is comparable to other previously described semiconducting systems. This result raises the prospect of energy recovery from nuclear wastes utilizing the present system, judging from the radiation tolerant nature of SiC. Additionally, we found different conversion efficiencies between the two samples during the same process. This could be explained using hard x-ray photoelectron spectroscopy and secondary ion mass spectroscopy measurements, suggesting the creation of Ni–Si compounds at the interface in the sample with poor performance. Hence, such combined measurements are useful to provide data that electrical measurements cannot provide us.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.