Abstract

In the early phase of kidney transplantation, the transplanted kidney is exposed to insults like ischemia/reperfusion, which is a leading cause of acute renal failure (ARF). ARF in the context of renal transplantation predisposes the graft to developing chronic damage and to long-term graft loss. Hepatocyte growth factor (HGF) has been suggested to support the intrinsic ability of the kidney to regenerate in response to injury by its morphogenic, mitogenic, motogenic and antiapoptotic activities. In the present paper, we examine whether human HGF (hHGF) gene electrotransfer helps in the recovery from ARF in a model of rat renal warm ischemia. We also assess the advantages of this form of gene therapy by direct electroporation of the kidney, given that transplantation offers the possibility of manipulating the organ in vivo. We have compared the therapeutic efficiency of two electroporation methodologies in a rat ARF model. Although they both targeted the same organ, the two methods were applied to different parts of the animal: muscle and kidney. Kidney direct electrotransfer was shown to be more efficient not only in pharmacokinetic but also in therapeutic terms, so it may become a clinically practical alternative in renal transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call