Abstract

A method to directly collect negatively charged nucleic acids, such as DNA and RNA, in the biosamples simply by applying an electric field in between the sample and collection buffer separated by the nanofilter membrane is proposed. The nanofilter membrane was made of low-stress silicon nitride with a thickness of 100 nm, and multiple pores were perforated in a highly arranged pattern using nanoimprint technology with a pore size of 200 nm and a pore density of 7.22 × 108/cm2. The electrophoretic transport of hsa-mir-93-5p across the membrane was confirmed in pure microRNA (miRNA) mimic solution using quantitative reverse transcription-polymerase chain reactions (qRT-PCR). Consistency of the collected miRNA quantity, stability of the system during the experiment, and yield and purity of the prepared sample were discussed in detail to validate the effectiveness of the electrical protocol. Finally, in order to check the applicability of this method to clinical samples, liquid biopsy process was demonstrated by evaluating the miRNA levels in sera of hepatocellular carcinoma patients and healthy controls. This efficient system proposed a simple, physical idea in preparation of nucleic acid from biosamples, and demonstrated its compatibility to biological downstream applications such as qRT-PCR as the conventional nucleic acid extraction protocols.

Highlights

  • In genetic analysis of clinical samples, nucleic acid extraction from raw biosamples is the initial pre-treatment step to purify and concentrate the nucleic acid from other constituents of the samples including proteins, lipids, and other organic molecules

  • The complexity of the conventional nucleic acid extraction method led to the introduction of alternative techniques, which have focused on simplifying the process and reducing the extraction time [4, 6]

  • We developed a simpler nucleic acid preparation protocol in which direct current (DC) electric field drew the highly charged DNA or RNA from positively charged and weakly or non-charged species in biological and clinical samples

Read more

Summary

Introduction

In genetic analysis of clinical samples, nucleic acid extraction from raw biosamples is the initial pre-treatment step to purify and concentrate the nucleic acid from other constituents of the samples including proteins, lipids, and other organic molecules. One of the mainstream solidphase extraction techniques is based on the charge interaction principle, using a surface modified binding media such as silica bead (or membrane) or magnetic bead to selectively collect the nucleic acid from the sample and ethanol-based buffers to wash out impurities [1,2,3,4,5] While this method and related products are well established [6,7,8,9], it normally constitutes more than 10 steps, requires substantial time and skilled personnel to produce stable extraction results.

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call