Abstract

A planar boron-doped diamond (BDD) electrode was treated with KOH and functionalized with 3-aminopropyltriethoxysilane (APTES) to serve as a biosensing platform for biomolecule immobilization with glucose oxidase (GOx) as a test model. The free amino groups of GOx and APTES were cross-linked by glutaraldehyde (X), a bifunctional chemical to form a stable enzyme layer (GOx-X-APTES) on BDD. Micrographs obtained by scanning electron microscopy revealed that a mesoporous structure uniformly covered the BDD surface. Cyclic voltammetry of GOx immobilized showed a pair of well-defined redox peaks in neutral phosphate buffer solution, corresponding to the direct electron transfer of GOx. The apparent heterogeneous electron transfer rate constant of the immobilized GOx was estimated to be 8.85 ± 0.47 s(-1), considerably higher than the literature reported values. The determination of glucose was carried out by amperometry at -0.40 V, and the developed biosensor showed good reproducibility and stability with a detection limit of 20 μM. Both ascorbic and uric acids at normal physiological conditions did not provoke any signals. The dynamic range of glucose detection was further extended by covering the enzyme electrode with a thin Nafion layer. The Nafion/GOx-X-APTES/BDD biosensor showed excellent stability, a detection limit of 30 μM, a linear range between 35 μM and 8 mM, and a dynamic range up to 14 mM. Such analytical performances were compared favorably with other complicated sensing schemes using nanomaterials, redox polymers, and nanowires. The APTES-functionalized BDD could be easily extended to immobilize other redox enzymes or proteins of interests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call