Abstract

Bilirubin oxidase encapsulated within a silica sol-gel/carbon nanotube composite electrode effectively catalyzed the reduction of molecular oxygen into water through direct electron transfer at the carbon nanotube electrode surface. In this nanocomposite approach, the silica matrix is designed to be sufficiently porous for substrate molecules to have access to the enzyme and yet provides a protective cage for immobilization without affecting biological activity. The incorporation of carbon nanotubes adds electrical connectivity and increases active electrode surface area. The standard surface electron transfer rate constant was calculated to be 59 s(-1) which indicates that the carbon nanotube side walls are primarily responsible for electron transfer. The use of direct electron transfer processes simplifies biofuel cell fabrication by eliminating the need for redox mediator and ion-conducting separators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.