Abstract

We report on a new whole cell biosensor for hydrogen peroxide. A chitosan-coated glassy carbon electrode (GCE) was modified with poly(N,N-diethylacrylamide) (PDEA) hydrogel containing human red blood cells (RBCs). The morphology of RBCs in the hydrogel was investigated using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy and SEM were applied to study the association of the PDEA chains and RBCs. Uncompromised bioactivity of native human hemoglobin in the RBCs on the modified GCE was confirmed by cyclic voltammetry. The modified electrode showed a faster electron transfer rate and better electrocatalytic activity in the reduction of H2O2 than previously reported sensors. A linear relationship is found between the response to H2O2 and its concentration in the range from 0.11 μM to 12.7 mM. The detection limit is 55 nM at an SNR of 3. It is assumed that the improvement of the biosensor results from the porosity and conductivity of the PDEA hydrogel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.