Abstract

In flow anode systems, surface-bound hydroxyl radicals (*OH) are generated at the solid-liquid interface of suspended particulate charge carriers at potentials well below that required for oxygen evolution as a result of water splitting. While these surface-bound radicals are powerful indiscriminant oxidants that often lead to complete mineralization of organic pollutants, the more selective process of direct electron transfer (DET) may also occur at the particle electrode interfaces and play a critical role in the degradation of some contaminants. In this study, we investigated DET processes in a flow anode system in which carbon black was utilized as the flow anode material and Pt, Ti, IrRu and IrTa meshes were used as the current collectors. The results indicate that the use of a carbon black flow anode enhanced the DET rate by 20 times at 1.0 V vs Ag/AgCl compared to the control experiment with no carbon black particles present. Low solution conductivity had a more obvious negative effect on the DET process (compared to *OH mediated oxidation) due to the high potential drop and inhibition of mass transfer processes at the solid-liquid interfaces of the anode particles. The DET rates were dependent on the particular anode current collector used (i.e., Ti, IrRu, IrTa or Pt mesh) with differences in rates ascribed to the electron transfer resistance of the current collectors in the flow anode system. Detailed investigation of the degradation of phenol in a flow anode system revealed that this widely studied contaminant could be degraded with an energy consumption of 3.08 kWh m−3, a value substantially lower than that required with other techniques. Results of this study provide a better understanding of the DET mechanism at the solid-solid and solid-liquid interfaces with these insights expected to benefit the design of flow anode materials and current collectors and lead to the improvement in performance of flow anode systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call