Abstract

Electro-optic polymer waveguides in electron beam sensitive polymethyl methacrylate (PMMA) polymer matrix doped with organic nonlinear chromophores could be directly patterned by electron beam exposure with high resolution and smoothness. The polymer in the exposed regions was removed with standard electron beam resist developer and without damaging the chromophore containing polymer waveguides. Feature sizes on the order of 100 nm could be clearly resolved. High quality microring resonators made of YL124/PMMA electro-optic polymer were successfully fabricated with this technique. The measured resonance extinction ratios were more than 16 dB and quality factors were in the range of 10(3) approximately 10(4).

Highlights

  • Multi-functionality and compactness of micro-ring resonators make them promising building blocks for high density photonic integration

  • Electro-optic polymer waveguides in electron beam sensitive polymethyl methacrylate (PMMA) polymer matrix doped with organic nonlinear chromophores could be directly patterned by electron beam exposure with high resolution and smoothness

  • High quality microring resonators made of YL124/PMMA electro-optic polymer were successfully fabricated with this technique

Read more

Summary

Introduction

Multi-functionality and compactness of micro-ring resonators make them promising building blocks for high density photonic integration. Based on a systematic analysis and simulation of typical polymer microring resonators [12], fabrication of the submicron coupling gap with a precision

Experiments and results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.