Abstract

Hydrogen sulfide (H2S) emitted from oil industry's hydrotreating processes can be converted into hydrogen and used back to the same processes through a H2S splitting cycle, where the Bunsen reaction and HI decomposition are two participating reactions. To overcome the difficulties and complications posted in the scaling up of the cycle, direct electrolysis of the Bunsen reaction product solution was proposed and has been studied in a batch electrolysis cell in our earlier work. This paper studies the direct electrolysis using a customer-made, continuous-flow electrolysis cell. The effects of the operating parameters including the current density, the entering HI concentration and flow rate of the anolyte, the toluene to aqueous phase ratio and stirring speed in anolyte cell, the H2SO4 concentration and circulation rate of the catholyte on the performing parameters such as the conversion of iodide ions, the yield of iodine transferred to toluene, and the anodic and cathodic current efficiencies for iodide conversion and hydrogen production were carefully investigated. The results show that the cathodic current efficiency for hydrogen production is nearly 100% for all the runs and that the anodic current efficiency for iodide ion conversion to iodine is relatively low (20%–70%) and varies with the changes in operating parameters. Running at high levels of the current density, the volumetric ratio of toluene to aqueous phase in anolyte, or the stirring speed in anolyte, and low levels of the entering concentration of I− in anolyte or the flow rate of anolyte in electrolysis operation are in favor of having a high iodide conversion and high I2-toluene yield. Iodide anions at a few mmol L−1 level (a few thousandths of the entering concentration) are found in the cathodic chamber caused by its diffuse against the electric field and the proton exchange membrane. The continuous, direct electrolysis of the Bunsen product solution can be considered being adapted in the sulfur-iodine (S–I) water splitting cycle for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call