Abstract

Cytokinin oxidase from Nipponbare (OsCKX4) was successfully displayed on the surface of E. coli cells by an ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif and a maltodextrin-binding protein(MBP) from E. coli as a solubility enhancer. The OsCKX4-displayed bacteria can be directly immobilized onto an electrode to selectively detect cytokinins, thus eliminating the need for enzyme extraction and purification. Direct electrochemistry of the cofactor FADH2 in OsCKX4 has been achieved on an edge-plane pyrolytic graphite electrode (PGE) with a formal potential (E0’) of −0.45 V at pH 7.0 in phosphate buffer. With the addition of isopentenyladenine, the reduction peak current for FADH2 decreased, and the oxidative peak current increased gradually. Therefore, a bacteria-OsCKX4-modified PGE has been developed for the detection of isopentenyladenine with a linear range of 1.0–11.0 μM and a lower limit of detection of 0.7 μM (S/N = 3). Slight interference was observed in the presence of other phytohormones, including brassinosteroid, abscisic acid, methylene jasminate and gibberellin. The proposed bacterial biosensor is stable, specific and simple and has great potential for applications that require the detection of cytokinins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call