Abstract

A novel electrochemical sensing system for direct electrochemistry-based hydrogen peroxide biosensor was developed that relied on the virtues of excellent biocompatibility, conductivity and high sensitivity to the local perturbations of single-layer graphene nanoplatelet (SLGnP). To demonstrate the concept, the horseradish peroxidase (HRP) enzyme was selected as a model to form the SLGnP-TPA (tetrasodium 1,3,6,8-pyrenetetrasulfonic acid)–HRP composite film. The single-layer graphene composite film displayed a pair of well-defined and good reversible cyclic voltammetric peak for Fe(III)/Fe(II) redox couple of HRP, reflecting the enhancement for the direct electron transfer between the enzyme and the electrode surface. Analysis using electrochemical impedance spectroscopy (EIS) revealed that electrostatic attractions existed between graphene monolayers and enzyme molecules. The intimate graphene and enzyme interaction was also observed using scanning electron microscopy (SEM), which resulted in the special properties of the composite film. Ultraviolet visible spectroscopy (UV–vis) indicated the enzyme in the composite film retained its secondary structure similar to the native state. The composite film demonstrated excellent electrochemical responses for the electrocatalytic reduction of hydrogen peroxide (H 2O 2), thus suggesting its great potential applications in direct electrochemistry-based biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.