Abstract

A new amperometric biosensor for hydrogen peroxide (H2O2) has been developed that is based on direct electrochemistry and electrocatalysis of hemoglobin (Hb) in a multilayer inorganic–organic hybrid film. o-Phenylenediamine (PDA) was electropolymerized onto a glassy carbon electrode (GCE), and then negatively charged nanogold particles and positively charged poly(diallyldimethylammonium chloride) (PDDA) were alternately assembled on the PDA/GCE surface. Finally, Hb was electrostatically adsorbed on the surface of gold nanoparticles. The electrochemical behavior of the resulting biosensor (Hb/{nanogold/PDDA}n/PDA/GCE) was assessed and optimized. The performance and factors influencing the biosensor were studied in detail. Under optimal conditions, the immobilized Hb displayed good electrocatalytic response to the H2O2 reduction ranging from 1.3 µM to 1.4 mM with a detection limit of 0.8 µM (at 3δ). In addition, the biosensor exhibited rapid response, good reproducibility, and long-term stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.