Abstract

A biofunctionalized graphene nanohybrid was prepared by simultaneously sonicating graphene and riboflavin 5'-monophosphate sodium salt (FMNS). FMNS, as a biodispersant, showed an efficient stabilization for obtaining highly dispersed graphene nanosheets in an aqueous solution. Due to the superior dispersion of graphene and the excellent electrochemical redox activity of FMNS, a direct electrochemical DNA sensor was fabricated by adopting the inherent electrochemical redox activity of graphene-FMNS (Gr-FMNS). The comparison between using traditional electrochemical indicator ([Fe(CN)6]3-/4-) and using the self-signal of Gr-FMNS was fully conducted to study the DNA-sensing performance. The results indicate that the proposed DNA-sensing platform displays fine selectivity, high sensitivity, good stability, and reproducibility using either [Fe(CN)6]3-/4- probe or the self-signal of Gr-FMNS. The two methods display the same level of detection limit: 7.4 × 10-17 M (using [Fe(CN)6]3-/4-) and 8.3 × 10-17 M (using self-signal), respectively, and the latter exhibits higher sensitivity. Furthermore, the sensing platform also can be applied for the DNA determination in real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call