Abstract

Influenza virus represents a major concern of human health and animal production. PB1-F2 is a small proapoptotic protein supposed to contribute to the virulence of influenza A virus (IAV). However, the molecular mechanism of action of PB1-F2 is still unclear.PB1-F2 expression and behavior during the viral cycle is difficult to follow with classical biochemical methods. In this work we have developed an electrochemical biosensor based on immuno-detection system for quantification of PB1-F2 protein in infected cell. The electrochemical immunosensor was based on conducting copolypyrrole integrating ferrocenyl group as redox marker for enhancing signal detection. A specific anti-PB1-F2 monoclonal antibody was immobilized on the copolypyrrole layer via biotin–streptavidin system. We demonstrate that this electrochemical system sensitively detect purified recombinant PB1-F2 over a wide range of concentrations from 5 nM to 1.5µM. The high sensor sensitivity allowed the detection of PB1-F2 in lysates of infected cells confirming that PB1-F2 is expressed in early stages of viral cycle. The immunosensor developed shows enhanced performances for the evaluation of PB1-F2 protein concentration in biological samples and could be applied for studying of PB1-F2 during influenza virus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call